jeudi 5 décembre 2013

(bN)(S/N)Z = bSZ.

A Ottawa, au Canada, un professeur de mathématiques a mis au point 
un modèle qui permet de prévoir la vitesse de contamination en cas 
de pandémie zombie. 




(bN)(S/N)Z = bSZ.

Cette équation pourrait bien signer votre perte.
Ceci dit, seulement si vous vous trouvez au milieu
d'une pandémie de zombie.


Cette équation apocalyptique nous provient de l'université d'Ottawa. Elle désigne le taux de transmission du virus zombie, d'un mort-vivant jusqu'à un grand nombre selon leurs concepteurs, le professeur de mathématiques Robert J.Smith et ses étudiants. Le travail du professeur Smith a d'ailleurs inspiré d'autres
chercheurs qui ont mis au points divers modèles mathématiques concernant les zombies. Tous ces travaux seront ensuite compilés et publiés avec le travail du professeur Smith dans le "Mathematical Modeling of Zombies" (University of Ottawa Press, 2014).

Dans son étude, Robert Smith démontre que l'infection zombie est le virus qui provoquera la fin du monde si elle apparaît. La similitude d'une infection zombie avec une pandémie "classique" font de ces créatures de parfait sujets pour des analyses théorique d'épidémies, qui peuvent être utilisées pour faire marcher l'imagination des gens tout aussi bien que pour explorer des principes scientifiques.

Quant à une apocalypse zombie, le modèle de Smith montre qu'une infection de zombies se propage rapidement (avec N représentant la population totale, S le nombre de personnes sensibles, Z les zombies, et la probabilité de transmission). Il montre également que les zombies prendrait le contrôle du monde. Il n'y a aucune chance d'espérer un "équilibre stable" dans lequel les humains pourraient coexister avec les morts-vivants ou éradiquer la maladie, comme l'explique Live Sciences.

Quand les maths traitent de zombies

L'analyse des zombies ajoute quelques nouvelles rides à la modélisation des maladies traditionnelle : "Les morts peuvent être ressuscités comme des zombies, et les humains vont attaquer les personnes infectées". "Habituellement, les morts ne sont pas une variable dynamique", a déclaré Smith. "Et les gens ne cherchent
pas à tuer les personnes victimes d'une infection." 

Ces éléments - les infections et les attaques contre les zombies - font que le modèle est plus compliqué, car ils introduisent deux facteurs non-linéaires, ou des facteurs qui ne changent à un rythme constant, a dit Smith, qui a modelé des épidémies de VIH, de paludisme. La plupart des modèles de la maladie comprennent un seul élément non linéaire: la transmission de la maladie.Avoir deux facteurs non-linéaires rend les mathématiques sur les zombies extrêmement sensibles à de petites modifications des paramètres.

"Il suffit d'un seul zombie pour infecter une ville"

Cette forte infectiosité fait que l'épidémie de zombie est imparable dans la plupart des cas, selon le modèle de Smith. "Parce qu'il suffit d'un seul zombie pour infecter une ville, "ni la quarantaine ni une progression lente
de la maladie pourrait arrêter la 'Zombie Apocalypse' - seulement la retarder", a déclaré Smith. Seules de fréquentes attaques, de plus en plus efficaces contre les membres transformés de l'humanité pourrait permettre à l'Homme de l'emporter sur les morts-vivants, a-t-il dit.

Pour modéliser ce genre d'enchevêtrement humain-zombie, Smith a utilisé une technique relativement nouvelle en mathématiques appelée "équations différentielles impulsives", qui montre comment les chocs brusques affectent les systèmes. Communément utilisée pour des orbites de satellites, la technique a été mise
au point dans les années 1990, alors que la plupart des outils mathématiques datent de plusieurs siècles. Bien qu'un peu "geek" sur les bords, les zombies peuvent se targuer de développer les mathématiques, au Canada du moins.

Source : gentside.com

Aucun commentaire:

Enregistrer un commentaire